Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Mathematics of Operations Research
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational Complexity of a Cost Allocation Approach to a Fixed Cost Spanning Forest Problem

Computational complexity of a cost allocation approach to a fixed cost spanning forest problem
Authors: Granot, Daniel; Granot, Frieda;

Computational Complexity of a Cost Allocation Approach to a Fixed Cost Spanning Forest Problem

Abstract

We present a computational analysis of a game theoretic approach to a cost allocation problem arising from a graph optimization problem, referred to as the fixed cost spanning forest (FCSF) problem. The customers in the FCSF problem, represented by nodes in a graph G, are in need of service that can be produced at some facilities yet to be constructed. The cost allocation problem is concerned with the fair distribution of the cost of providing the service among customers. We formulate this cost allocation problem as a cooperative game, referred to as the FCSF game. In general, the core of a FCSF game may be empty. However, for the case when G is a tree, it is shown that the core is not empty. Moreover, we prove that in this case core points can be generated in strongly polynomial time. We further provide a nonredundant characterization of the core of the FCSF game defined over a tree in the special case when all nodes are communities. This is shown to lead, in some instances, to a strongly polynomial algorithm for computing the nucleolus.

Related Organizations
Keywords

facility location, core, undirected connected graph, Programming involving graphs or networks, fixed cost spanning forest game, Resource and cost allocation (including fair division, apportionment, etc.), Discrete location and assignment, Other game-theoretic models, Cooperative games, fixed cost spanning forest problem, nucleolus, Abstract computational complexity for mathematical programming problems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!