
The article deals with the problem of noise effect on semi-supervised learning. The goal of this article is to analyze the impact of noise on the accuracy of binary classification models created using three semi-supervised learning algorithms, namely Simple Recycled Selection, Incrementally Reinforced Selection, and Hybrid Algorithm, using Support Vector Machines to build a base classifier. Different algorithms to compute similarity matrices, namely Radial Bias Function, Cosine Similarity, and K-Nearest Neighbours were analyzed to understand their effect on model accuracy. For benchmarking purposes, datasets from the UCI repository were used. To test the noise effect, different amounts of artificially generated randomly-labeled samples were introduced into the dataset using three strategies (labeled, unlabeled, and mixed) and compared to the baseline classifier trained with the original dataset and the classifier trained on the reduced-size original dataset. The results show that the introduction of random noise into the labeled samples decreases classifier accuracy, while a moderate amount of noise in unmarked samples can have a positive effect on classifier accuracy.
semi-supervised learning, зашумлені данні, machine learning, опорні векторні машини, data noise, полууправляемое обучение, опорные векторные машины, зашумленные данные, машинне навчання, напівкероване навчання, машинное обучение, support vector machines
semi-supervised learning, зашумлені данні, machine learning, опорні векторні машини, data noise, полууправляемое обучение, опорные векторные машины, зашумленные данные, машинне навчання, напівкероване навчання, машинное обучение, support vector machines
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
