
arXiv: 2403.06211
The problem of packing unequal circles into a circular container stands as a classic and challenging optimization problem in computational geometry. This study introduces a suite of innovative and efficient methods to tackle this problem. Firstly, we present a novel layout-graph transformation method that represents configurations as graphs, together with an inexact hash method facilitating fast comparison of configurations for isomorphism or similarity. Leveraging these advancements, we propose an Iterative Solution-Hashing Search algorithm adept at circumventing redundant exploration through efficient configuration recording. Additionally, we introduce several enhancements to refine the optimization and search processes, including an adaptive adjacency maintenance method, an efficient vacancy detection technique, and a Voronoi-based locating method. Through comprehensive computational experiments across various benchmark instances, our algorithm demonstrates superior performance over existing state-of-the-art methods, showcasing remarkable applicability and versatility. Notably, our algorithm surpasses the best-known results for 56 out of 179 benchmark instances while achieving parity with the remaining instances.
Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Computational Geometry
Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Computational Geometry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
