Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mainlobe Jamming Suppression Using MIMO-STCA Radar

Authors: Wang, Huake; Cai, Bairui; Liao, Guisheng;

Mainlobe Jamming Suppression Using MIMO-STCA Radar

Abstract

Radar jamming suppression, particularly against mainlobe jamming, has become a critical focus in modern radar systems. This article investigates advanced mainlobe jamming suppression techniques utilizing a novel multiple-input multiple-output space-time coding array (MIMO-STCA) radar. Extending the capabilities of traditional MIMO radar, the MIMO-STCA framework introduces additional degrees of freedom (DoFs) in the range domain through the utilization of transmit time delays, offering enhanced resilience against interference. One of the key challenges in mainlobe jamming scenarios is the difficulty in obtaining interference-plus-noise samples that are free from target signal contamination. To address this, the study introduces a cumulative sampling-based non-homogeneous sample selection (CS-NHSS) algorithm to remove target-contaminated samples, ensuring accurate interference-plus-noise covariance matrix estimation and effective noise subspace separation. Building on this, the subsequent step is to apply the proposed noise subspace-based jamming mitigation (NSJM) algorithm, which leverages the orthogonality between noise and jamming subspace for effective jamming mitigation. However, NSJM performance can degrade due to spatial frequency mismatches caused by DoA or range quantization errors. To overcome this limitation, the study further proposes the robust jamming mitigation via noise subspace (RJNS) algorithm, incorporating adaptive beampattern control to achieve a flat-top mainlobe and broadened nulls, enhancing both anti-jamming effectiveness and robustness under non-ideal conditions. Simulation results verify the effectiveness of the proposed algorithms. Significant improvements in mainlobe jamming suppression are demonstrated through transmit-receive beampattern analysis and enhanced signal-to-interference-plus-noise ratio (SINR) curve.

Keywords

Signal Processing (eess.SP), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green