
doi: 10.3934/jimo.2020136
<p style='text-indent:20px;'>In this paper, an effective algorithm based on the reformulation-linearization technique (RLT) is developed to solve the smallest enclosing circle problem. Extensive computational experiments demonstrate that the algorithm based on the RLT outperforms the existing algorithms in terms of the solution time and quality in average.</p>
smallest enclosing circle, Nonlinear programming, second order cone programming, linear programming
smallest enclosing circle, Nonlinear programming, second order cone programming, linear programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
