
arXiv: 2109.14025
Deep algorithm unrolling has emerged as a powerful model-based approach to develop deep architectures that combine the interpretability of iterative algorithms with the performance gains of supervised deep learning, especially in cases of sparse optimization. This framework is well-suited to applications in biological imaging, where physics-based models exist to describe the measurement process and the information to be recovered is often highly structured. Here, we review the method of deep unrolling, and show how it improves source localization in several biological imaging settings.
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Information Theory, Computer Vision and Pattern Recognition (cs.CV), Information Theory (cs.IT), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)
Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Information Theory, Computer Vision and Pattern Recognition (cs.CV), Information Theory (cs.IT), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
