Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Counting Simplices in Hypergraph Streams

Authors: Amit Chakrabarti; Themistoklis Haris;

Counting Simplices in Hypergraph Streams

Abstract

We consider the problem of space-efficiently estimating the number of simplices in a hypergraph stream. This is the most natural hypergraph generalization of the highly-studied problem of estimating the number of triangles in a graph stream. Our input is a $k$-uniform hypergraph $H$ with $n$ vertices and $m$ hyperedges. A $k$-simplex in $H$ is a subhypergraph on $k+1$ vertices $X$ such that all $k+1$ possible hyperedges among $X$ exist in $H$. The goal is to process a stream of hyperedges of $H$ and compute a good estimate of $T_k(H)$, the number of $k$-simplices in $H$. We design a suite of algorithms for this problem. Under a promise that $T_k(H) \ge T$, our algorithms use at most four passes and together imply a space bound of $O( ��^{-2} \log��^{-1} \text{polylog} n \cdot \min\{ m^{1+1/k}/T, m/T^{2/(k+1)} \} )$ for each fixed $k \ge 3$, in order to guarantee an estimate within $(1\pm��)T_k(H)$ with probability at least $1-��$. We also give a simpler $1$-pass algorithm that achieves $O(��^{-2} \log��^{-1} \log n\cdot (m/T) ( ��_E + ��_V^{1-1/k} ))$ space, where $��_E$ (respectively, $��_V$) denotes the maximum number of $k$-simplices that share a hyperedge (respectively, a vertex). We complement these algorithmic results with space lower bounds of the form $��(��^{-2})$, $��(m^{1+1/k}/T)$, $��(m/T^{1-1/k})$ and $��(m��_V^{1/k}/T)$ for multi-pass algorithms and $��(m��_E/T)$ for $1$-pass algorithms, which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our techniques extend and generalize several different ideas previously developed for triangle counting in graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs.

Country
Germany
Keywords

graph algorithms, FOS: Computer and information sciences, hypergraphs, triangle counting, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), data streaming, sub-linear algorithms, 004, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green