Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accelerating Proximal Gradient-type Algorithms using Damped Anderson Acceleration with Restarts and Nesterov Initialization

Authors: Henderson, Nicholas C.; Varadhan, Ravi;

Accelerating Proximal Gradient-type Algorithms using Damped Anderson Acceleration with Restarts and Nesterov Initialization

Abstract

Despite their frequent slow convergence, proximal gradient schemes are widely used in large-scale optimization tasks due to their tremendous stability, scalability, and ease of computation. In this paper, we develop and investigate a general two-phase scheme for accelerating the convergence of proximal gradient algorithms. By using Nesterov's momentum method in an initialization phase, our procedure delivers fast initial descent that is robust to the choice of starting value. Once iterates are much closer to the solution after the first phase, we utilize a variation of Anderson acceleration to deliver more rapid local convergence in the second phase. Drawing upon restarting schemes developed for Nesterov acceleration, we can readily identify points where it is advantageous to switch from the first to the second phase, which enables use of the procedure without requiring one to specify the number of iterations used in each phase. For the second phase, we adapt and extend a version of Anderson acceleration with algorithm restarts, and we introduce a subsetted version of this procedure that improves performance in problems with substantial sparsity. Through simulation studies involving four representative optimization problems, we show that our proposed algorithm can generate substantial improvements over competing acceleration methods.

Keywords

FOS: Computer and information sciences, Computation, Computation (stat.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green