Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Algorithmicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithmica
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Algorithmica
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Tight Runtime Analysis for the $${(\mu + \lambda )}$$ EA

A tight runtime analysis for the \((\mu + \lambda)\) EA
Authors: Denis Antipov; Benjamin Doerr;

A Tight Runtime Analysis for the $${(\mu + \lambda )}$$ EA

Abstract

Despite significant progress in the theory of evolutionary algorithms, the theoretical understanding of evolutionary algorithms which use non-trivial populations remains challenging and only few rigorous results exist. Already for the most basic problem, the determination of the asymptotic runtime of the $(\mu+\lambda)$ evolutionary algorithm on the simple OneMax benchmark function, only the special cases $\mu=1$ and $\lambda=1$ have been solved. In this work, we analyze this long-standing problem and show the asymptotically tight result that the runtime $T$, the number of iterations until the optimum is found, satisfies \[E[T] = \Theta\bigg(\frac{n\log n}{\lambda}+\frac{n}{\lambda / \mu} + \frac{n\log^+\log^+ \lambda/ \mu}{\log^+ \lambda / \mu}\bigg),\] where $\log^+ x := \max\{1, \log x\}$ for all $x > 0$. The same methods allow to improve the previous-best $O(\frac{n \log n}{\lambda} + n \log \lambda)$ runtime guarantee for the $(\lambda+\lambda)$~EA with fair parent selection to a tight $\Theta(\frac{n \log n}{\lambda} + n)$ runtime result.

Comment: 50 pages, extended version of the conference paper Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet Runtime analysis for the ({\mu} + {\lambda}) EA optimizing OneMax. In Genetic and Evolutionary Computation Conference, GECCO 2018, pages 1459-1466. ACM, 2018

Keywords

Evolutionary algorithms, genetic algorithms (computational aspects), Computer Science - Neural and Evolutionary Computing, Analysis of algorithms, evolutionary algorithms, runtime analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
bronze