
doi: 10.3762/bjnano.16.81
In this paper, comparative studies of selected properties of titanium dioxide (TiO2) coatings deposited using electron beam evaporation (EBE) and ion beam-assisted deposition (IBAD) are presented. Post-process annealing at 800 °C was also conducted to examine its impact on the properties of the prepared coatings. After annealing at 800 °C, a transition from amorphous to the anatase phase occurred for all coatings. In particular, an increase in ion beam current led to a reduction in crystallite size by approximately 30% compared to coatings prepared by conventional EBE process. The average anatase crystallite size for annealed films was in the range of 30.8 to 43.5 nm. A detailed SEM analysis of surface morphology and cross sections revealed that the TiO2 films prepared by IBAD had smaller, rounded grains and were denser compared to those deposited by EBE. Optical properties showed high transparency of 77–83% in the visible wavelength range for all as-prepared thin films. However, annealing caused a decrease of the transparency level by 32% for films deposited by EBE, while for films from the IBAD process the decrease was less than 10%. The use of an ion gun increased the hardness of the TiO2 films from 2.4 to 3.5 GPa (Iibg = 4 A). Although a similar relationship was observed for coatings after annealing, hardness values were lower than for as-deposited coatings. The most notable differences were observed in the abrasion tests, where the IBAD process significantly enhanced the abrasion resistance of the coatings. This research highlights the potential of IBAD to prepare dense, adhesive, and durable TiO2 coatings with improved optical and mechanical properties, suitable for applications requiring enhanced wear resistance.
optical properties, Technology, tio2 coatings, T, Chemical technology, Science, Physics, QC1-999, Q, TP1-1185, mechanical properties, Full Research Paper, electron beam evaporation, ion beam-assisted deposition, nanocrystalline anatase
optical properties, Technology, tio2 coatings, T, Chemical technology, Science, Physics, QC1-999, Q, TP1-1185, mechanical properties, Full Research Paper, electron beam evaporation, ion beam-assisted deposition, nanocrystalline anatase
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
