Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Measurement + Contro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Measurement + Control
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Measurement + Control
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Measurement + Control
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.60692/st...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/nm...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Masking of temporal activity for video quality control, measurement and assessment

إخفاء النشاط الزمني لمراقبة جودة الفيديو وقياسه وتقييمه
Authors: Ali Akbar Siddique; M Tahir Qadr; Zia Mohy Ud Din;

Masking of temporal activity for video quality control, measurement and assessment

Abstract

Every video stream possesses temporal redundancy based on the amount of motion presenting in it. An ample amount of motion in a video sequence may cause distorting artifacts, and in order to avoid them, there is a possibility to mask the motion or temporal activity that is not noticeable to a human eye in real time. The artifacts such as blockiness and blurriness are instigated in the video sequence as soon as it is subjected to the process of compression, and they tend to become more and more intense with the increase in temporal activity. In this paper, an algorithm is proposed to mask the temporal activity using temporal masking coefficient ( q) that is unnoticeable by a human eye to bring down the distortion levels. It is possible to adjust the quality of the video sequence by varying the q parameter and thus controlling its overall quality index. Frames are extracted from the video sequence, and displacement or motion vectors are also calculated from the consecutive frames using a bi-directional block matching algorithm. These motion vectors are used to estimate the quantity of motion present between consecutive frames of the same scene. Video sequences used for this purpose are basically H.264 format. Temporal masking is performed on a video sequence with and without the implementation of motion vector. Structural similarity index and peak signal-to-noise ratio are the quality measurement tools used to assess the performance of the proposed algorithm. A bit rate of 1.2% was saved by implementing proposed algorithm at q = 1 in contrast to the standard H.264/Advanced Video Coding.

Keywords

Video quality, Video Enhancement, Artificial intelligence, Metric (unit), Single Image Super-Resolution Techniques, Image Quality Assessment, Motion estimation, Redundancy (engineering), Bandwidth (computing), Visual arts, Engineering, Image (mathematics), Genetics, T1-995, Amplifier, Image Denoising, Motion vector, Image Quality Assessment in Multimedia Content, Distortion (music), Biology, Technology (General), Control engineering systems. Automatic machinery (General), Motion compensation, Quarter-pixel motion, Rate–distortion optimization, Masking (illustration), Computer science, Video processing, Operating system, Operations management, TJ212-225, Data compression, Video tracking, FOS: Biological sciences, Computer Science, Physical Sciences, Telecommunications, Blur Assessment, Computer vision, Computer Vision and Pattern Recognition, Image Denoising Techniques and Algorithms, Block-matching algorithm, Art, Sequence (biology)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
gold