
Evolutionary algorithms are one of the most common choices reported in the literature for the tuning of fuzzy logic controllers based on either type-1 or type-2 fuzzy systems. An alternative to evolutionary algorithms is the simple tuning algorithm (STA-FLC), which is a methodology designed to improve the response of type-1 fuzzy logic controllers in a practical, intuitive and simple ways. This paper presents an extension of the simple tuning algorithm for fuzzy logic controllers based on the theory of type-2 fuzzy systems by using a parallel model implementation, it also includes a mechanism to calculate the feedback gain, new integral criteria parameters, and the effect of the AND/OR operator combinations on the fuzzy rules to improve the algorithm applicability and performance. All these improvements are demonstrated with experiments applied to different types of plants.
Parameter tuning algorithm, Fuzzy controllers, Type-2 fuzzy logic
Parameter tuning algorithm, Fuzzy controllers, Type-2 fuzzy logic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
