Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www.cs.utexas...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.cs.utexas.edu/%7Evl...
Part of book or chapter of book
Data sources: UnpayWall
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revisiting the Cache Miss Analysis of Multithreaded Algorithms

Authors: Richard Cole; Vijaya Ramachandran;

Revisiting the Cache Miss Analysis of Multithreaded Algorithms

Abstract

This paper revisits the cache miss analysis of algorithms when scheduled using randomized work stealing (RWS) in a parallel environment where processors have private caches. We focus on the effect of task migration on cache miss costs, and in particular, the costs of accessing "hidden" data typically stored on execution stacks (such as the return location for a recursive call). Prior analyses, with the exception of [1], do not account for such costs, and it is not clear how to extend them to account for these costs. By means of a new analysis, we show that for a variety of basic algorithms these task migration costs are no larger than the costs for the remainder of the computation, and thereby recover existing bounds. We also analyze a number of algorithms implicitly analyzed by [1], namely Scans (including Prefix Sums and Matrix Transposition), Matrix Multiply (the depth n in-place algorithm, the standard 8-way divide and conquer algorithm, and Strassen's algorithm), I-GEP, finding a longest common subsequence, FFT, the SPMS sorting algorithm, list ranking and graph connected components; we obtain sharper bounds in many cases. While this paper focusses on the RWS scheduler, the bounds we obtain are a function of the number of steals, and thus would apply to any scheduler given bounds on the number of steals it induces.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average