Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.4230/dar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Direct-Style Effect Notation for Sequential and Parallel Programs (Artifact)

Authors: Richter, David; Böhler, Timon; Weisenburger, Pascal; Mezini, Mira;

A Direct-Style Effect Notation for Sequential and Parallel Programs (Artifact)

Abstract

Modeling sequential and parallel composition of effectful computations has been investigated in a variety of languages for a long time. In particular, the popular do-notation provides a lightweight effect embedding for any instance of a monad. Idiom bracket notation, on the other hand, provides an embedding for applicatives. First, while monads force effects to be executed sequentially, ignoring potential for parallelism, applicatives do not support sequential effects. Composing sequential with parallel effects remains an open problem. This is even more of an issue as real programs consist of a combination of both sequential and parallel segments. Second, common notations do not support invoking effects in direct-style, instead forcing a rigid structure upon the code. In this paper, we propose a mixed applicative/monadic notation that retains parallelism where possible, but allows sequentiality where necessary. We leverage a direct-style notation where sequentiality or parallelism is derived from the structure of the code. We provide a mechanisation of our effectful language in Coq and prove that our compilation approach retains the parallelism of the source program.

DARTS, Vol. 9, Special Issue of the 37th European Conference on Object-Oriented Programming (ECOOP 2023), pages 17:1-17:3

Keywords

parallelism, Software and its engineering → Concurrent programming structures, concurrency, do-notation, effects, Software and its engineering → Domain specific languages, Software and its engineering → Parallel programming languages, 004, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green