Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/751d2...
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Software defined networking based network traffic classification using machine learning techniques

Authors: Ayodeji Olalekan Salau; Melesew Mossie Beyene;

Software defined networking based network traffic classification using machine learning techniques

Abstract

The classification of network traffic has become increasingly crucial due to the rapid growth in the number of internet users. Conventional approaches, such as identifying traffic based on port numbers and payload inspection are becoming ineffective due to the dynamic and encrypted nature of modern network traffic. A number of researchers have implemented Software Defined Networking (SDN) based traffic classification using Machine Learning (ML) and Deep Learning (DL) models. However, the studies had various limitations such as encrypted traffic detection, payload inspection, poor detection accuracy, and challenges with testing models both in offline and real-time traffic modes. ML models together with SDN are adopted nowadays to enhance classification performance. In this paper, both supervised (Logistic Regression, Decision Tree, Random Forest, AdaBoost, and Support Vector Machine) and unsupervised (K-means clustering) ML models were used to classify Domain Name System (DNS), Telnet, Ping, and Voice traffic flows simulated using the Distributed Internet Traffic Generator (D-ITG) tool. The use of this tool effectively manages and classifies traffic types based on their application. The study discussed the dataset used, model selection, implementation of the model, and implementation techniques (such as pre-processing, feature extraction, ML algorithm, and model evaluation metrics). The proposed model in SDN was implemented in Mininet for designing the network architecture and generating network traffic. Anaconda Python environment was utilized for traffic classification using various ML techniques. Among the models tested, the Decision Tree supervised learning achieved the highest accuracy of 99.81%, outperforming other supervised and unsupervised learning algorithms. These results indicate that the integration of ML with SDN provides an efficient classification method for identifying and accurately classifying both offline and real-time network traffic, enhanced quality of service (QoS), detection of encrypted packets, deep packet inspection and management.

Keywords

Software defined networking, Quality of service, Traffic classification, Science, Machine learning, Q, R, Medicine, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Green
hybrid