Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamically Detecting DOM-Related Atomicity Violations in JavaScript with Asynchronous Call

Authors: Dezhi Wang; Lei Xu 0003; Baowen Xu; Weifeng Zhang 0001;

Dynamically Detecting DOM-Related Atomicity Violations in JavaScript with Asynchronous Call

Abstract

In Web applications, atomicity violations caused by AJAX (Asynchronous JavaScript and XML) generate non-determinism and inconsistency. This paper introduces a dynamical detecting approach for atomicity violations in AJAX. Implemented based on Jalangi, an existing instrumentation framework, our technique monitors the execution of a Web application and tracks the Function Callback Flow to find atomic regions by taint analysis. Next, we build a dynamic event model, so as to precisely record the related DOM elements in call and callback steps with low overhead. Then we develop an event-based algorithm to acquire the results, which are classified into different severity levels (benign or harmful). Finally, we conduct an empirical experiment on a subset of Alexa top-ranked websites. Our tool detects 175 DOM related atomicity violations in which 48.6% of violations are identified as harmful after manual inspection.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!