Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Aerospace Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System

Authors: Ning Xiaoling; Chen Yangyi; Zhang Linsen;

A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System

Abstract

Compressive sampling matching pursuit (CoSaMP), as a conventional algorithm requiring system sparsity and sensitive to step size, was improved in this paper by approximating the sparsity with adaptive variable step size. In the proposed algorithm (CoSaMP with variable step size abbreviated as Vss-CoSaMP), the idea of approximating sparsity with adaptive step size was borrowed from the sparsity adaptive matching pursuit (SAMP) algorithm to determine the sparsity for the CoSaMP algorithm. The applicability of the CoSaMP algorithm was therefore expanded considerably. On this basis, a step size reduction was added as the iteration termination condition of an orthogonal frequency division multiplexing (OFDM) system. An adaptive variable step size algorithm was then put forward to address the CoSaMP algorithm’s sensitivity to step size. It could realize the required precision at different initial step sizes. A simulation was carried out to analyze the influence of pilot number and step size in an OFDM system on the algorithm. The algorithms, including SAMP, CoSaMP, and Vss-CoSaMP, were compared with two sparse channels, revealing that the Vss-CoSaMP algorithm overcame the problem of the CoSaMP algorithm, that is, the impossibility to forecast the channel sparsity. With the adaptive step size, the proposed algorithm could reach and achieve better accuracy than the CoSaMP algorithm. Additionally, the proposed algorithm was superior over the SAMP algorithm in terms of reconstruction, mean square error (MSE), and bit error ratio (BER).

Related Organizations
Keywords

TL1-4050, Motor vehicles. Aeronautics. Astronautics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold