
The paper describes scalable coding schemes which use DCT and motion compensated interframe prediction. In the scalable coding, a lower resolution picture can be obtained by decoding only a partial bitstream, while a full resolution picture is obtained by decoding the total bitstream. Two types of scalable coding scheme are studied. In the first type (schemes A), an input picture is first decomposed by DCT, then MC prediction coding is carried out in the DCT picture domain. In the second type (scheme B), MC prediction is first carried out in the full resolution picture and then DCT decomposition is performed for the prediction difference picture. The coding performance of these two schemes was estimated by computer simulation experiments. A performance comparison between scalable and non-scalable coding schemes was also carried out. The experimental results have demonstrated that scheme B is superior to schemes A.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
