Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformatics
Article . 2025
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases

Authors: Satoko Namba; Chen Li; Noriko Yuyama Otani; Yoshihiro Yamanishi;

SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases

Abstract

Abstract Motivation Identifying effective therapeutic targets poses a challenge in drug discovery, especially for uncharacterized diseases without known therapeutic targets (e.g. rare diseases, intractable diseases). Results This study presents a novel machine learning approach using multimodal vector-quantized variational autoencoders (VQ-VAEs) for predicting therapeutic target molecules across diseases. To address the lack of known therapeutic target–disease associations, we incorporate the information on uncharacterized diseases without known targets or uncharacterized proteins without known indications (applicable diseases) in the semi-supervised learning (SSL) framework. The method integrates disease-specific and protein perturbation profiles with genetic perturbations (e.g. gene knockdowns and gene overexpressions) at the transcriptome level. Cross-cell representation learning, facilitated by VQ-VAEs, was performed to extract informative features from protein perturbation profiles across diverse human cell types. Concurrently, cross-disease representation learning was performed, leveraging VQ-VAE, to extract informative features reflecting disease states from disease-specific profiles. The model’s applicability to uncharacterized diseases or proteins is enhanced by considering the consistency between disease-specific and patient-specific signatures. The efficacy of the method is demonstrated across three practical scenarios for 79 diseases: target repositioning for target–disease pairs, new target prediction for uncharacterized diseases, and new indication prediction for uncharacterized proteins. This method is expected to be valuable for identifying therapeutic targets across various diseases. Availability and implementation Code: github.com/YamanishiLab/SSL-VQ and Data: 10.5281/zenodo.14644837.

Keywords

Original Paper, Drug Discovery, Humans, Computational Biology, Supervised Machine Learning, Transcriptome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold