
The emerging and existing light field displays are highly capable of realistic presentation of 3D scenes on auto-stereoscopic glasses-free platforms. The light field size is a major drawback while utilising 3D displays and streaming purposes. When a light field is of high dynamic range, the size increases drastically. In this paper, we propose a novel compression algorithm for a high dynamic range light field which yields a perceptually lossless compression. The algorithm exploits the inter and intra view correlations of the HDR light field by interpreting it to be a four-dimension volume. The HDR light field compression is based on a novel 4DDCT-UCS (4D-DCT Uniform Colour Space) algorithm. Additional encoding of 4DDCT-UCS acquired images by HEVC eliminates intra-frame, inter-frame and intrinsic redundancies in HDR light field data. Comparison with state-of-the-art coders like JPEG-XL and HDR video coding algorithm exhibits superior compression performance of the proposed scheme for real-world light fields.
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
