
In this work, we optimized the process of sulfating abies ethanol lignin with complexes of sulfuric anhydride with pyridine and 1,4-dioxane. Experimentally found are the conditions for the implementation of the process of sulfation of abies ethanol lignin by complexes of sulfur trioxide with 1,4-dioxane and pyridine, providing a high sulfur content (12.0–12.6%). It was shown that a high sulfur content of 12.0–13.5% (mass.) in the obtained ethanol lignin sulfate is achieved when the ratio of the amount of chlorosulfonic acid to the amount of abies ethanol lignin is 20.22 : 1 mmol : g and the duration of the sulfation process is 60–120 min and independent of the nature of the sulfating complex. The structure and composition of water-soluble sulfated abies ethanol lignin are confirmed by FTIR spectroscopy, gel permeation chromatography and elemental analysis. In the FTIR spectra of sulfated abies ethanol lignin, in comparison with the FTIR spectra of the initial abies ethanol lignin, there are absorption bands in the region of 1270–1260, 1220–1212, 861–803 cm-1, corresponding to vibrations of sulfate groups. Compared to the initial lignin, sulfated abies ethanol lignin has a low degree of polydispersity. In particular, there was an increase in Mw c ~1.5 kDa to ~3.4 kDa in lignin sulfated for 30 min and a decrease in polydispersity from 2.59 to 1.22 compared to the initial abies ethanol lignin. With an increase in the sulfation time, the profile of the molecular mass distribution curve shifts to a high molecular weight region, with a simultaneous increase in polydispersity to 1.5 and Mw increases to ~4.3 kDa.
pyridine, сульфатированный этаноллигнин, dioxane, ethanol lignin, ИК-спектроскопия, sulfation, gel permeation chromatography, пиридин, abies wood, древесина пихты, гельпроникающая хроматография, сульфатирование, оптимизация, chlorosulfonic acid, FTIR spectroscopy, sulfated ethanol lignin, этаноллигнин, хлорсульфоновая кислота, диоксан, optimization
pyridine, сульфатированный этаноллигнин, dioxane, ethanol lignin, ИК-спектроскопия, sulfation, gel permeation chromatography, пиридин, abies wood, древесина пихты, гельпроникающая хроматография, сульфатирование, оптимизация, chlorosulfonic acid, FTIR spectroscopy, sulfated ethanol lignin, этаноллигнин, хлорсульфоновая кислота, диоксан, optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
