Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transfer Attacks and Defenses for Large Language Models on Coding Tasks

Authors: Zhang, Chi; Wang, Zifan; Mangal, Ravi; Fredrikson, Matt; Jia, Limin; Pasareanu, Corina;

Transfer Attacks and Defenses for Large Language Models on Coding Tasks

Abstract

Modern large language models (LLMs), such as ChatGPT, have demonstrated impressive capabilities for coding tasks including writing and reasoning about code. They improve upon previous neural network models of code, such as code2seq or seq2seq, that already demonstrated competitive results when performing tasks such as code summarization and identifying code vulnerabilities. However, these previous code models were shown vulnerable to adversarial examples, i.e. small syntactic perturbations that do not change the program's semantics, such as the inclusion of "dead code" through false conditions or the addition of inconsequential print statements, designed to "fool" the models. LLMs can also be vulnerable to the same adversarial perturbations but a detailed study on this concern has been lacking so far. In this paper we aim to investigate the effect of adversarial perturbations on coding tasks with LLMs. In particular, we study the transferability of adversarial examples, generated through white-box attacks on smaller code models, to LLMs. Furthermore, to make the LLMs more robust against such adversaries without incurring the cost of retraining, we propose prompt-based defenses that involve modifying the prompt to include additional information such as examples of adversarially perturbed code and explicit instructions for reversing adversarial perturbations. Our experiments show that adversarial examples obtained with a smaller code model are indeed transferable, weakening the LLMs' performance. The proposed defenses show promise in improving the model's resilience, paving the way to more robust defensive solutions for LLMs in code-related applications.

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green