Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE/ACM Transaction...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE/ACM Transactions on Computational Biology and Bioinformatics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SOJNMF: Identifying Multidimensional Molecular Regulatory Modules by Sparse Orthogonality-Regularized Joint Non-Negative Matrix Factorization Algorithm

Authors: Yujie Wang; Tianhao Guan; Gang Zhou; Hongqian Zhao; Jie Gao;

SOJNMF: Identifying Multidimensional Molecular Regulatory Modules by Sparse Orthogonality-Regularized Joint Non-Negative Matrix Factorization Algorithm

Abstract

Cancer is not only a very aggressive but also a very diverse disease. Recent advances in high-throughput omics technologies of cancer have enabled biomedical researchers to have more opportunities for studying its multi-level biological regulatory mechanism. However, there are few methods to explore the underlying mechanism of cancer by identifying its multidimensional molecular regulatory modules from the multidimensional omics data of cancer. In this paper, we propose a sparse orthogonality-regularized joint non-negative matrix factorization (SOJNMF) algorithm which can integratively analyze multidimensional omics data. This method can not only identify multidimensional molecular regulatory modules, but reduce the overlap rate of features among the multidimensional modules while ensuring the sparsity of the coefficient matrix after decomposition. Gene expression data, miRNA expression data and gene methylation data of liver cancer are integratively analyzed based on SOJNMF algorithm. Then, we obtain 238 multidimensional molecular regulatory modules. The results of permutation test indicate that different omics features within these modules are significantly correlated in statistics. Meanwhile, the results of functional enrichment analysis show that these multidimensional modules are significantly related to the underlying mechanism of the occurrence and development of liver cancer.

Related Organizations
Keywords

MicroRNAs, Liver Neoplasms, Humans, Gene Regulatory Networks, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!