
Usage of high-level intermediate representations promises the generation of fast code from a high-level description, improving the productivity of developers while achieving the performance traditionally only reached with low-level programming approaches.\ud \ud High-level IRs come in two flavors: 1) domain-specific IRs designed only for a specific application area; or 2) generic high-level IRs that can be used to generate high-performance code across many domains. Developing generic IRs is more challenging but offers the advantage of reusing a common compiler infrastructure across various applications.\ud \ud In this paper, we extend a generic high-level IR to enable efficient computation with sparse data structures. Crucially, we encode sparse representation using reusable dense building blocks already present in the high-level IR. We use a form of dependent types to model sparse matrices in CSR format by expressing the relationship between multiple dense arrays explicitly separately storing the length of rows, the column indices, and the non-zero values of the matrix.\ud \ud We achieve high-performance compared to sparse low-level library code using our extended generic high-level code generator. On an Nvidia GPU, we outperform the highly tuned Nvidia cuSparse implementation of spmv multiplication across 28 sparse matrices of varying sparsity on average by 1.7×.
Parallel programming languages, Dependent Types, Compilers, Sparse Matrix, Software and its engineering, Code Generation
Parallel programming languages, Dependent Types, Compilers, Sparse Matrix, Software and its engineering, Code Generation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
