
AbstractAccurately assigning standardized diagnosis and procedure codes from clinical text is crucial for healthcare applications. However, this remains challenging due to the complexity of medical language. This paper proposes a novel model that incorporates extreme multi-label classification tasks to enhance International Classification of Diseases (ICD) coding. The model utilizes deformable convolutional neural networks to fuse representations from hidden layer outputs of pre-trained language models and external medical knowledge embeddings fused using a multimodal approach to provide rich semantic encodings for each code. A probabilistic label tree is constructed based on the hierarchical structure existing in ICD labels to incorporate ontological relationships between ICD codes and enable structured output prediction. Experiments on medical code prediction on the MIMIC-III database demonstrate competitive performance, highlighting the benefits of this technique for robust clinical code assignment.
ICD coding, Databases, Factual, Natural language processing, Few-shot learning, Science, Q, R, Medical knowledge representation, Article, Semantics, International Classification of Diseases, Extreme multi-label classification, Medicine, Humans, Neural Networks, Computer, Algorithms, Natural Language Processing
ICD coding, Databases, Factual, Natural language processing, Few-shot learning, Science, Q, R, Medical knowledge representation, Article, Semantics, International Classification of Diseases, Extreme multi-label classification, Medicine, Humans, Neural Networks, Computer, Algorithms, Natural Language Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
