Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Communications
Article . 2012 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-Complexity Soft Decoding of Huffman Codes and Iterative Joint Source Channel Decoding

Authors: Zribi, Amin; Pyndiah, Ramesh; Zaibi, Sonia; Guilloud, Frédéric; Bouallegue, Ammar;

Low-Complexity Soft Decoding of Huffman Codes and Iterative Joint Source Channel Decoding

Abstract

Most source coding standards (voice, audio, image and video) use Variable-Length Codes (VLCs) for compression. However, the VLC decoder is very sensitive to transmission errors in the compressed bit-stream. Previous contributions, using a trellis description of the VLC codewords to perform soft decoding, have been proposed. Significant improvements are achieved by this approach when compared with prefix decoding. Nevertheless, for realistic VLCs, the complexity of the trellis technique becomes intractable. In this paper, we propose a soft-input VLC decoding method using an a priori knowledge of the lengths of the source-symbol sequence and the compressed bit-stream with Maximum A Posteriori (MAP) sequence estimation. Performance in the case of transmission over an Additive White Gaussian Noise (AWGN) channel is evaluated. Simulation results show that the proposed decoding algorithm leads to significant performance gain in comparison with the prefix VLC decoding besides exhibiting very low complexity. A new VLC decoding method generating additional information regarding the reliability of the bits of the compressed bit-stream is also proposed. We consider the serial concatenation of a VLC with two types of channel code and perform iterative decoding. Results show that, when concatenated with a recursive systematic convolutional code (RSCC), iterative decoding provides remarkable error correction performance. In fact, a gain of about 2.3 dB is achieved, in the case of transmission over an AWGN channel, with respect to tandem decoding. Second, we consider a concatenation with a low-density parity-check (LDPC) code and it is shown that iterative joint source/channel decoding outperforms tandem decoding and an additional coding gain of 0.25 dB is achieved.

Keywords

Iterative methods, Variable-length codes, Error correction coding, Source coding, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing, Communication system performance, 620, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!