
doi: 10.1002/int.22105
handle: 11588/739566 , 11386/4721385
With the explosion of social media, automatic analysis of sentiment and emotion from user-generated content has attracted the attention of many research areas and commercial-marketing domains targeted at studying the social behavior of web users and their public attitudes toward brands, social events, and political actions. Capturing the emotions expressed in the written language could be crucial to support the decision-making processes: the emotion resulting from a tweet or a review about an item could affect the way to advertise or to trade on the web and then to make predictions about future changes in popularity or market behavior. This paper presents an experience with the emotion-based classification of textual data from a social network by using an extended version of the fuzzy C-means algorithm called extension of fuzzy C-means. The algorithm shows interesting results due to its intrinsic fuzzy nature that reflects the human feeling expressed in the text, often composed of a mix of blurred emotions, and at the same time, the benefits of the extended version yield better classification results.
FCM, EFCM, sentiment analysis, sentic computing, emotion extraction., FCM, emotion extraction, sentic computing, sentiment analysis, EFCM, EFCM; emotion extraction; Fuzzy C-Means; Sentic Computing; Sentiment Analysis
FCM, EFCM, sentiment analysis, sentic computing, emotion extraction., FCM, emotion extraction, sentic computing, sentiment analysis, EFCM, EFCM; emotion extraction; Fuzzy C-Means; Sentic Computing; Sentiment Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
