
handle: 11368/1707523 , 11390/850028
AbstractWe tackle the problem of relating models of systems (mainly biological systems) based on stochastic process algebras (SPA) with models based on differential equations. We define a syntactic procedure that translates programs written in stochastic Concurrent Constraint Programming (sCCP) into a set of Ordinary Differential Equations (ODE), and also the inverse procedure translating ODE's into sCCP programs. For the class of biochemical reactions, we show that the translation is correct w.r.t. the intended rate semantics of the models. Finally, we show that the translation does not generally preserve the dynamical behavior, giving a list of open research problems in this direction.
Stochastic Concurrent Constraint Programming; stochastic modeling; ordinary differential equations; biological systems, ordinary differential equations, biological systems, Stochastic Concurrent Constraint Programming, ordinary differential equation, stochastic modeling, Theoretical Computer Science, Computer Science(all)
Stochastic Concurrent Constraint Programming; stochastic modeling; ordinary differential equations; biological systems, ordinary differential equations, biological systems, Stochastic Concurrent Constraint Programming, ordinary differential equation, stochastic modeling, Theoretical Computer Science, Computer Science(all)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
