Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computer-assisted interpretation, in-depth exploration and single cell type annotation of RNA sequence data using k-means clustering algorithm

Authors: Pranshu, Saxena; Amit, Sinha; Sanjay Kumar, Singh;

Computer-assisted interpretation, in-depth exploration and single cell type annotation of RNA sequence data using k-means clustering algorithm

Abstract

At now, the majority of approaches rely on manual techniques for annotating cell types subsequent to clustering the data obtained from single-cell RNA sequencing (scRNA-seq). These approaches require a significant amount of physical exertion and depend substantially on the user's skill, perhaps resulting in uneven outcomes and inconsistency in treatment. In this paper, we provide a computer-assisted interpretation of every single cell of a tissue sample, along with an in-depth exploration of an individual cell's molecular, phenotypic and functional attributes. The paper will also perform k-means clustering followed by silhouette validation based on similar phenotype and functional attributes, and also, cell type annotation is performed, where we match a cell's gene profile against some known database by applying certain statistical conditions. Finally, all the genes are mapped spatially on the tissue sample. This paper is an aid to medicine to know which cells are expressed/not expressed in a tissue sample and their spatial location on the tissue sample.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!