Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hybrid Model for Load Balancing in Cloud Using File Type Formatting

Authors: Muhammad Junaid; Adnan Sohail; Adeel Ahmed; Abdullah Baz; Imran Ali Khan; Hosam Alhakami;

A Hybrid Model for Load Balancing in Cloud Using File Type Formatting

Abstract

Maintaining accuracy in load balancing using metaheuristics is a difficult task even with the help of recent hybrid approaches. In the existing literature, various optimized metaheuristic approaches are being used to achieve their combined benefits for proper load balancing in the cloud. These approaches often adopt multi-objective QoS metrics, such as reduced SLA violations, reduced makespan, high throughput, low overload, low energy consumption, high optimization, minimum migrations, and higher response time. The cloud applications are generally computation-intensive and can grow exponentially in memory with the increase in size if no proper effective and efficient load balancing technique is adopted resulting in poor quality solutions. To provide a better load balancing solution in cloud computing, with extensive data, a new hybrid model is being proposed that performs classification on the number of files present in the cloud using file type formatting. The classification is performed using Support Vector Machine (SVM) considering various file formats such as audio, video, text maps, and images in the cloud. The resultant data class provides high classification accuracy which is further fed into a metaheuristic algorithm namely Ant Colony Optimization (ACO) using File Type Formatting FTF for better load balancing in the cloud. Frequently used QoS metrics, such as SLA violations, migration time, throughput time, overhead time, and optimization time are evaluated in the cloud environment and comparative analysis is performed with recent metaheuristics, such as Ant Colony Optimization-Particle Swarm Optimization (ACOPS), Chaotic Particle Swarm Optimization (CPSO), Q- learning Modified Particle Swarm Optimization (QMPSO), Cat Swarm Optimization (CSO) and D-ACOELB. The proposed algorithm outperforms them and provides good performance with scalability and robustness.

Keywords

ACO, machine learning, classification, SVM, load balancing, hybrid metaheuristics, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
gold