Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ResearchGate Data
Preprint . 2020
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Formal Quantum Software Engineering: Introducing the Formal Methods of Software Engineering to Quantum Computing.

Authors: Carmelo R. Cartiere;

Formal Quantum Software Engineering: Introducing the Formal Methods of Software Engineering to Quantum Computing.

Abstract

Quantum computing (QC) represents the future of computing systems, but the tools for reasoning about the quantum model of computation, in which the laws obeyed are those on the quantum mechanical scale, are still a mix of linear algebra and Dirac notation; two subjects more suitable for physicists, rather than computer scientists and software engineers. On this ground, we believe it is possible to provide a more intuitive approach to thinking and writing about quantum computing systems, in order to simplify the design of quantum algorithms and the development of quantum software. In this paper, we move the first step in such direction, introducing a specification language as the tool to represent the operations of a quantum computer via axiomatic definitions, by adopting the same symbolisms and reasoning principles used by formal methods in software engineering. We name this approach formal quantum software engineering (F-QSE). This work assumes familiarity with the basic principles of quantum mechanics (QM), with the use of Zed (Z) which is a formal language of software engineering (SE), and with the notation and techniques of first-order logic (FOL) and functional programming (FP).

Keywords

Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green