Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Translational Engineering in Health and Medicine
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Interpretable Neonatal Lung Ultrasound Feature Extraction and Lung Sliding Detection System Using Object Detectors

Authors: Rodina Bassiouny; Adel Mohamed; Karthi Umapathy; Naimul Khan;

An Interpretable Neonatal Lung Ultrasound Feature Extraction and Lung Sliding Detection System Using Object Detectors

Abstract

The objective of this study was to develop an interpretable system that could detect specific lung features in neonates. A challenging aspect of this work was that normal lungs showed the same visual features (as that of Pneumothorax (PTX)). M-mode is typically necessary to differentiate between the two cases, but its generation in clinics is time-consuming and requires expertise for interpretation, which remains limited. Therefore, our system automates M-mode generation by extracting Regions of Interest (ROIs) without human in the loop. Object detection models such as faster Region Based Convolutional Neural Network (fRCNN) and RetinaNet models were employed to detect seven common Lung Ultrasound (LUS) features. fRCNN predictions were then stored and further used to generate M-modes. Beyond static feature extraction, we used a Hough transform based statistical method to detect "lung sliding" in these M-modes. Results showed that fRCNN achieved a greater mean Average Precision (mAP) of 86.57% (Intersection-over-Union (IoU) = 0.2) than RetinaNet, which only displayed a mAP of 61.15%. The calculated accuracy for the generated RoIs was 97.59% for Normal videos and 96.37% for PTX videos. Using this system, we successfully classified 5 PTX and 6 Normal video cases with 100% accuracy. Automating the process of detecting seven prominent LUS features addresses the time-consuming manual evaluation of Lung ultrasound in a fast paced environment. Clinical impact: Our research work provides a significant clinical impact as it provides a more accurate and efficient method for diagnosing lung diseases in neonates.

Keywords

Lung ultrasound, M-mode, Computer applications to medicine. Medical informatics, R858-859.7, Infant, Newborn, Pneumothorax, faster RCNN, RetinaNet, Pneumonia, Thorax, object detection models, Article, Hough transform, Medical technology, Humans, Neural Networks, Computer, R855-855.5, Lung

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold
Related to Research communities