Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Complex & Intelligen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A semi-supervised learning technique assisted multi-objective evolutionary algorithm for computationally expensive problems

Authors: Zijian Jiang; Chaoli Sun; Xiaotong Liu; Hui Shi; Sisi Wang;

A semi-supervised learning technique assisted multi-objective evolutionary algorithm for computationally expensive problems

Abstract

Abstract Existing multi-objective evolutionary algorithms (MOEAs) have demonstrated excellent efficiency when tackling multi-objective tasks. However, its use in computationally expensive multi-objective issues is hindered by the large number of reliable evaluations needed to find Pareto-optimal solutions. This paper employs the semi-supervised learning technique in model training to aid in evolutionary algorithms for addressing expensive multi-objective issues, resulting in the semi-supervised learning technique assisted multi-objective evolutionary algorithm (SLTA-MOEA). In SLTA-MOEA, the value of every objective function is determined as a weighted mean of values approximated by all surrogate models for that objective function, with the weights optimized through a convex combination problem. Furthermore, the number of unlabelled solutions participating in model training is adaptively determined based on the objective evaluations conducted. A group of tests on DTLZ test problems with 3, 5, and 10 objective functions, combined with a practical application, are conducted to assess the effectiveness of our proposed method. Comparative experimental results versus six state-of-the-art evolutionary algorithms for expensive problems show high efficiency of SLTA-MOEA, particularly for problems with irregular Pareto fronts.

Related Organizations
Keywords

Gaussian process model, Electronic computers. Computer science, Semi-supervised learning, QA75.5-76.95, Information technology, T58.5-58.64, Expensive multi-objective evolutionary algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold