Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Theoretic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Theoretical Biology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced prediction of recombination hotspots using input features extracted by class specific autoencoders

Authors: Abhigyan, Nath; S, Karthikeyan;

Enhanced prediction of recombination hotspots using input features extracted by class specific autoencoders

Abstract

In yeast and in some mammals the frequencies of recombination are high in some genomic locations which are known as recombination hotspots and in the locations where the recombination is below average are consequently known as coldspots. Knowledge of the hotspot regions gives clues about understanding the meiotic process and also in understanding the possible effects of sequence variation in these regions. Moreover, accurate information about the hotspot and coldspot regions can reveal insights into the genome evolution. In the present work, we have used class specific autoencoders for feature extraction and reduction. Subsequently the deep features that are extracted from the autoencoders were used to train three different classifiers, namely: gradient boosting machines, random forest and deep learning neural networks for predicting the hotspot and coldspot regions. A comparative performance analysis was carried out by experimenting on deep features extracted from different sets of the training data using autoencoders for selecting the best set of deep features. It was observed that learning algorithms trained on features extracted from the combined class specific autoencoder out performed when compared with the performances of these learning algorithms trained with other sets of deep features. So the combined class-specific autoencoder based feature extraction can be applied to a growing range of biological problems to achieve superior prediction performance.

Related Organizations
Keywords

Recombination, Genetic, Deep Learning, Base Sequence, Neural Networks, Computer, Saccharomyces cerevisiae, Classification, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!