Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alexandria Engineeri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alexandria Engineering Journal
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alexandria Engineering Journal
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HIØ Brage
Article . 2022
Data sources: HIØ Brage
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A machine learning-based intrusion detection for detecting internet of things network attacks

Authors: Saheed, Yakub Kayode; Abiodun, Aremu Idris; Misra, Sanjay; Holone, Monica Kristiansen; Colomo-Palacios, Ricardo;

A machine learning-based intrusion detection for detecting internet of things network attacks

Abstract

The Internet of Things (IoT) refers to the collection of all those devices that could connect to the Internet to collect and share data. The introduction of varied devices continues to grow tremendously, posing new privacy and security risks—the proliferation of Internet connections and the advent of new technologies such as the IoT. Various and sophisticated intrusions are driving the IoT paradigm into computer networks. Companies are increasing their investment in research to improve the detection of these attacks. By comparing the highest rates of accuracy, institutions are picking intelligent procedures for testing and verification. The adoption of IoT in the different sectors, including health, has also continued to increase in recent times. Where the IoT applications became well known for technology researchers and developers. Unfortunately, the striking challenge of IoT is the privacy and security issues resulting from the energy limitations and scalability of IoT devices. Therefore, how to improve the security and privacy challenges of IoT remains an important problem in the computer security field. This paper proposes a machine learning-based intrusion detection system (ML-IDS) for detecting IoT network attacks. The primary objective of this research focuses on applying ML-supervised algorithm-based IDS for IoT. In the first stage of this research methodology, feature scaling was done using the Minimum-maximum (min–max) concept of normalization on the UNSW-NB15 dataset to limit information leakage on the test data. This dataset is a mixture of contemporary attacks and normal activities of network traffic grouped into nine different attack types. In the next stage, dimensionality reduction was performed with Principal Component Analysis (PCA). Lastly, six proposed machine learning models were used for the analysis. The experimental results of our findings were evaluated in terms of validation dataset, accuracy, the area under the curve, recall, F1, precision, kappa, and Mathew correlation coefficient (MCC). The findings were also benchmarked with the existing works, and our results were competitive with an accuracy of 99.9% and MCC of 99.97%.

Country
Norway
Keywords

Principal Component Analysis, principal component analysis, XgBoost, Internet of Things, min-max normalization, Min-max Normalization, Engineering (General). Civil engineering (General), Machine Learning, VDP::Teknologi: 500, machine learning, cat boost, intrusion detection system, UNSWNB-15, TA1-2040, Intrusion Detection System

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    260
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
260
Top 0.1%
Top 1%
Top 0.1%
Green
gold