
doi: 10.1121/1.5096630
pmid: 31046369
The sparse direct adaptive equalizer (DAE) has recently attracted much attention in underwater acoustic (UWA) communications for its improved performance compared with conventional non-sparse DAEs. The recursive least squares (RLS) type sparse DAEs were barely studied, mainly due to their high complexity despite fast convergence. This letter presents several low-complexity sparse RLS algorithms for multiple-input multiple-output UWA channel equalization. The resulting fast sparse RLS DAEs are tested to be effective and outperform their non-sparse counterpart by experimental results.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
