Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Materials...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Materials Research and Technology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine learning-based prediction of the mechanical properties of β titanium shape memory alloys

Authors: Naoki Nohira; Taichi Ichisawa; Masaki Tahara; Itsuo Kumazawa; Hideki Hosoda;

Machine learning-based prediction of the mechanical properties of β titanium shape memory alloys

Abstract

This study developed machine learning (ML) models to predict the mechanical properties of Ni-free β-type titanium shape memory alloys (SMAs). Using a dataset of 107 entries derived from both literature and laboratory experiments, we focused on predicting ultimate tensile strength (UTS) and elongation (EL). Key features, including Mo equivalent, bond order, and d-orbital energy level, were selected for the models through Pearson correlation maps and subset selection methods. Four ML algorithms—Linear Regression (LIN), Support Vector Regression (SVR), Random Forest Regression (RFR), and Gradient Boosting Regression (GBR)—were employed and evaluated using metrics like mean absolute error (MAE), mean squared error (MSE), and coefficient of determination (R2). The GBR model for EL showed the highest prediction accuracy (R2 = 0.998 for training and R2 = 0.817 for testing), whereas UTS predictions were less accurate (R2 < 0.6 for testing). Although the models were also adapted to predict yield stress (YS), their accuracy was reduced, with improvements seen when incorporating phase constitution information reflecting phase stability. The primary reasons for the discrepancy in this study include the small dataset size and the absence of microstructural features. This research demonstrates the potential of ML models in predicting the mechanical properties of β-type titanium SMAs, highlighting the importance of integrating domain-specific knowledge through feature engineering to overcome the challenge of small data sets, and to enhance accuracy and robustness.

Related Organizations
Keywords

Mining engineering. Metallurgy, Regression model, Machine learning, TN1-997, β-Ti alloy, Mechanical property, Shape memory alloy, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold