
doi: 10.1109/srds.2012.62
Randomized Byzantine Consensus can be an interesting building block in the implementation of asynchronous distributed systems. Despite its exponential worst-case complexity, which would make it less appealing in practice, a few experimental works have argued quite the opposite. To bridge the gap between theory and practice, we analyze a well-known state-of-the-art algorithm in normal system conditions, in which crash failures may occur but no malicious attacks, proving that it is fast on average. We then leverage our analysis to improve its best-case complexity from three to two phases, by reducing the communication operations through speculative executions. Our findings are confirmed through an experimental validation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
