
doi: 10.21661/r-559010
Статья продолжает результаты автора на данную тему. Определяется поле сдвигов по формуле F(x+iy)=f(-x+iy) для произвольной аналитической в произвольной открытой области функции f(p). Рассматриваются две системы координат с центрами на действительной оси. Доказано, что в относительно общих условиях поле сдвигов совпадает с самой аналитической функцией, если рассматривать значения поля сдвигов при совпадении векторов переменных в разных системах координат. Аналогичный результат получается как следствие введения новой системы координат и рассмотрения уравнений одного многообразия в этих системах с разных точек зрения. Периодичность аналитических функций выводится также из сдвигов массивов полей сдвигов в одной полуплоскости.
поле сдвигов функции, аналитические функции, неоднозначность представления функций, отражение функций, периодичность функций
поле сдвигов функции, аналитические функции, неоднозначность представления функций, отражение функций, периодичность функций
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
