
arXiv: 2505.18043
Clustering is a fundamental task in both machine learning and data mining. Among various methods, edge-colored clustering (ECC) has emerged as a useful approach for handling categorical data. Given a hypergraph with (hyper)edges labeled by colors, ECC aims to assign vertex colors to minimize the number of edges where the vertex color differs from the edge's color. However, traditional ECC has inherent limitations, as it enforces a nonoverlapping and exhaustive clustering. To tackle these limitations, three versions of ECC have been studied: Local ECC and Global ECC, which allow overlapping clusters, and Robust ECC, which accounts for vertex outliers. For these problems, both linear programming (LP) rounding algorithms and greedy combinatorial algorithms have been proposed. While these LP-rounding algorithms provide high-quality solutions, they demand substantial computation time; the greedy algorithms, on the other hand, run very fast but often compromise solution quality. In this paper, we present an algorithmic framework that combines the strengths of LP with the computational efficiency of combinatorial algorithms. Both experimental and theoretical analyses show that our algorithms efficiently produce high-quality solutions for all three problems: Local, Global, and Robust ECC. We complement our algorithmic contributions with complexity-theoretic inapproximability results and integrality gap bounds, which suggest that significant theoretical improvements are unlikely. Our results also answer two open questions previously raised in the literature.
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Databases, Computer Science - Data Structures and Algorithms, Databases (cs.DB), Data Structures and Algorithms (cs.DS), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Databases, Computer Science - Data Structures and Algorithms, Databases (cs.DB), Data Structures and Algorithms (cs.DS), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
