
handle: 11729/300
H.264 video coding standard supports several inter- prediction coding modes that use macroblock (MB) partitions with variable block sizes. Rate-distortion (R-D) optimal selection of both the motion vectors (MVs) and the coding mode of each MB is essential for an H.264 encoder to achieve superior coding efficiency. Unfortunately, searching for optimal MVs of each possible subblock incurs a heavy computational cost. In this paper, in order to reduce the computational burden of integer-pel motion estimation (ME) without sacrificing from the coding performance, we propose a R-D and complexity joint optimization framework. Within this framework, we develop a simple method that determines for each MB which partitions are likely to be optimal. MV search is carried out for only the selected partitions, thus reducing the complexity of the ME step. The mode selection criteria is based on a measure of spatiotemporal activity within the MB. The procedure minimizes the coding loss at a given level of computational complexity either for the full video sequence or for each single frame. For the latter case, the algorithm provides a tight upper bound on the worst case complexity/execution time of the ME module. Simulation results show that the algorithm speeds up integer-pel ME by a factor of up to 40 with less than 0.2 dB loss in coding efficiency.
Optimization, Rate-distortion (R-D), Motion compensation, Decision, Image coding, Complexity, Vectors, Motion estimation (ME), Algorithm, Computational complexity, Motion vectors (MV), Video coding, H.264, Rate distortion, Algorithms
Optimization, Rate-distortion (R-D), Motion compensation, Decision, Image coding, Complexity, Vectors, Motion estimation (ME), Algorithm, Computational complexity, Motion vectors (MV), Video coding, H.264, Rate distortion, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
