Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Geochimica et Cosmoc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geochimica et Cosmochimica Acta
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-ENS-LYON
Article . 2025
Data sources: HAL-ENS-LYON
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2025
Data sources: HAL AMU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-INSU
Article . 2025
Data sources: HAL-INSU
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2025
Data sources: HAL INRAE
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accretion of the anomalous CR2 chondrite Northwest Africa 14674: Implications for the complexities of the CR parent bodies

Authors: R.H. Hewins; P.-M. Zanetta; H. Leroux; S. Laforet; C. Le Guillou; M. Marinova; S. Pont; +6 Authors

Accretion of the anomalous CR2 chondrite Northwest Africa 14674: Implications for the complexities of the CR parent bodies

Abstract

An understanding of the differences between ungrouped, or anomalous, and normal carbonaceous chondrites could provide information on the population of parent bodies required to explain a chondrite group and on first solid accretion and evolution in the outer protoplanetary disk. The CR chondrites are key in this respect, as they display a unique formation history that distinguishes them from other groups. They are known to have formed between 4.1 and 4.6 Myr after CAI, with two generations of chondrules. Northwest Africa (NWA) 14674 is a CR2 anomalous (CR2-an) chondrite with very similar oxygen isotope composition, dark inclusion (DI) content, and serpentine-magnetite matrix to Al Rais (CR2-an). Both are petrologic subtype 2.3 with fresh magnesian olivine, and partly altered ferroan olivine, pyroxene, and metal. Additionally, NWA 14674 contains residual GEMS-like material at the nanoscale within preserved moderately altered areas. DI and matrix in NWA 14674 are mineralogically similar but they have different fabrics, and matrix is more porous than both DI and fine-grained rims (FGR). Matrix has aligned framboidal magnetite aggregates swathing the chondrules, suggesting slight compaction of the chondrite. Some DI have inner chondrule fragments and concentric layers richer and poorer in magnetite, indicating formation as accretionary pellets and lapilli: they are pebbles rather than clasts. The framboidal magnetite abundance is consistent with an alkaline alteration fluid potentially due to NH3 ice mixed with the more common water ice, which implies late distal accretion. Comparison with the CR chondrites Bells (regolith-like) and NWA 801 (with high-pressure clasts) indicates that a complex history involving inward drift, disruption of the grandparent body, and reaccretion of debris along with chondrules, DI pebbles, and dust is required to explain CR chondrite formation. The diverse facies observed in CR chondrites may be explained by the formation of relatively large parent bodies, comprising distinct layers (core to regolith). Some material has been inherited from a chondritic protoplanet that formed during the oligarchic growth phase of planetary formation. Subsequently, this initial body underwent disruption and partial reaccretion into the CR parent body.

Country
France
Keywords

Accretion, [CHIM.MATE] Chemical Sciences/Material chemistry, CR chondrites, Electron microscopy, Parent body

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
INRAE
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!