Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cardiovascular Computed Tomography
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cumulative exposure amount of PM2.5 in the ambient air is associated with coronary atherosclerosis - Serial coronary CT angiography study

Authors: Heesun Lee; Heesun Lee; Hyo Eun Park; Hyo Eun Park; Minkwan Kim; Jung Hye Kim; Jin Young Min; +8 Authors

Cumulative exposure amount of PM2.5 in the ambient air is associated with coronary atherosclerosis - Serial coronary CT angiography study

Abstract

We investigated the change of coronary atherosclerosis with long-term exposure to fine particulate matter of aerodynamic diameter <2.5 ​μm (PM2.5) using coronary computed tomography angiography (CCTA).Subjects undergoing serial CCTAs between January 2007 and December 2017 (n ​= ​3,127) were analyzed. Each individual's cumulative amount of PM2.5 exposure between the two CCTAs was evaluated by Kriging interpolation and zonal analysis, considering the time interval between the two CCTAs. The main outcome was progression of coronary artery calcium (CAC) with additional semiquantitative analysis on the changes in the severity and composition of atherosclerotic plaques.The CAC scores increased by 30.8 Agatston units per-year under a median PM2.5 concentration 24.9 ​μg/m3 and tended to increase with the cumulative amount of PM2.5 exposure (r ​= ​0.321, p ​<0.001). The CAC progressed in 1,361 (43.5%) subjects during a median 53 months follow-up. The cumulative amount of PM2.5 exposure was independently associated with CAC progression (adjusted OR 1.09, p ​<0.001). By random forest analysis, the relative impact of cumulative amount of PM2.5 exposure on CAC progression was higher than that of traditional cardiovascular risk factors and the average concentration of PM2.5. The extent of coronary atherosclerosis and newly developed calcified plaque on follow-up were also significantly associated with the cumulative amount of PM2.5 exposure.Cumulative exposure to air pollution is associated with the progression of diffuse coronary calcification, the importance of which may be more significant than other traditional cardiovascular risk factors. Further investigations into the causality between PM2.5 and coronary atherosclerosis are warranted to improve global cardiovascular health.

Keywords

Coronary Artery Disease* / diagnostic imaging, Computed Tomography Angiography, Air pollution, 610, Coronary Artery Disease, Coronary Angiography / adverse effects, Coronary Angiography, Coronary artery disease, Atherosclerotic* / complications, Particulate Matter / adverse effects, Computed Tomography Angiography / methods, Ambient, Calcinosis* / etiology, Predictive Value of Tests, Particulate Matter / analysis, Coronary computed tomography angiography, Humans, Environmental Exposure / adverse effects, Atherosclerotic* / chemically induced, Plaque, Air Pollutants* / analysis, Air Pollutants, Coronary Artery Disease* / etiology, Calcinosis, Environmental Exposure, Atherosclerosis, Plaque, Atherosclerotic, Air Pollutants* / adverse effects, Atherosclerosis*, Environmental Exposure / analysis, Particulate Matter, Particulate matter

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green