Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Xibei Gongye Daxue X...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Xibei Gongye Daxue Xuebao
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Xibei Gongye Daxue Xuebao
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A turbulence reduced order model based on non-interpolated convolutional autoencoder

Authors: WU Pin; ZHANG Bo; SONG Chao; ZHOU Zhu;

A turbulence reduced order model based on non-interpolated convolutional autoencoder

Abstract

Reduced-order modeling stands as a pivotal method in curbing the computational expenses linked with expansive fluid dynamics quandaries by employing proxy numerical simulations. Within this realm, downscaling and reconstruction methods serve as fundamental constituents of reduced-order modeling. The traditional intrinsic orthogonal decomposition relies on linear mapping, often relinquishing a substantial amount of nonlinear flow information within the flow field. Meanwhile, autoencoders equipped with fully-connected structures, maybe encounter a parameter explosion when handling larger-scale flow field meshes, impeding effective training. Convolutional autoencoders necessitate uniform interpolation across the flow field to attain a uniform flow field snapshot, yet this process frequently introduces interpolation errors and unwarranted temporal overheads. This paper introduces an innovative solution: a non-interpolated convolutional autoencoder, designed to extract nonlinear features from the flow field while curbing parameter count, evading interpolation errors, and mitigating additional computational burdens. Illustratively, in a two-dimensional cylindrical winding flow scenario, both the reduced dimensional reconstruction display root mean square errors of approximately 1×10-3. Notably, the velocity cloud and absolute error cloud vividly exhibit the non-interpolated convolutional autoencoder's remarkable prowess in reconstruction.

Related Organizations
Keywords

reduced-order model, non-interpolated convolutional autoencoder, reduced-dimensional reconstruction, TL1-4050, Motor vehicles. Aeronautics. Astronautics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold