
Dans les MOSFET à grande échelle, le bruit télégraphique aléatoire (RTN) peut diminuer la fiabilité et le rendement des circuits. Le RTN est produit par piégeage de charge, ce qui, dans les gros appareils, entraîne $ 1/f$ de bruit. Nous avons dérivé des formulations analytiques pour modéliser l'impact du RTN dans le retard des onduleurs et dans la gigue des oscillateurs en anneau. Nous montrons que les paramètres d'intérêt lors de la caractérisation du RTN pour l'analyse des circuits sont la distribution des déviations de courant et la densité des pièges dans l'espace de surface, l'énergie et dans l'espace logarithmique des constantes de temps. Le modèle donne une relation directe entre la variance de gigue dans les oscillateurs (ou la variance de retard dans les inverseurs) et la densité spectrale de puissance de RTN, qui comprend $ 1/f$ bruit. Les formulations peuvent être écrites en utilisant des paramètres du domaine temporel ou fréquentiel.
En los MOSFET de gran escala, el ruido telegráfico aleatorio (RTN) puede disminuir la fiabilidad y el rendimiento de los circuitos. RTN se produce por atrapamiento de carga, que en dispositivos grandes da como resultado $ 1/f$ ruido. Derivamos formulaciones analíticas para modelar el impacto de RTN en el retardo de los inversores y en la fluctuación de los osciladores de anillo. Mostramos que los parámetros de interés a la hora de caracterizar RTN para el análisis de circuitos son la distribución de desviaciones de corriente y la densidad de trampas en el espacio de área, energía y en log-espacio de tiempo-constantes. El modelo proporciona una relación directa entre la varianza de fluctuación en los osciladores (o la varianza de retardo en los inversores) y la densidad espectral de potencia de RTN, que incluye $ 1/f$ ruido. Las formulaciones se pueden escribir usando parámetros de dominio de tiempo o frecuencia.
In highly scaled MOSFETs, random telegraph noise (RTN) can decrease the reliability and yield of circuits. RTN is produced by charge trapping, which in large devices results in $1/f$ noise. We derived analytical formulations for modeling the impact of RTN in the delay of inverters and in the jitter of ring oscillators. We show that the parameters of interest when characterizing RTN for circuit analysis are the distribution of current deviations and the density of traps in the space of area, energy and in log-space of time-constants. The model gives a direct relation between jitter variance in oscillators (or delay variance in inverters) and the power spectral density of RTN, which includes $1/f$ noise. The formulations can be written using time- or frequency-domain parameters.
في MOSFETs عالية التحجيم، يمكن أن تقلل ضوضاء التلغراف العشوائية (RTN) من موثوقية الدوائر وإنتاجيتها. يتم إنتاج RTN عن طريق احتجاز الشحنة، مما يؤدي في الأجهزة الكبيرة إلى 1 دولار/و$ ضوضاء. لقد استخلصنا صيغًا تحليلية لنمذجة تأثير RTN في تأخير المحولات وفي اهتزاز المذبذبات الحلقية. نوضح أن المعلمات المثيرة للاهتمام عند توصيف RTN لتحليل الدائرة هي توزيع الانحرافات الحالية وكثافة المصائد في مساحة المساحة والطاقة وفي مساحة سجل الثوابت الزمنية. يعطي النموذج علاقة مباشرة بين تباين التوتر في المذبذبات (أو تباين التأخير في المحولات) والكثافة الطيفية للقدرة لـ RTN، والتي تشمل 1 دولار/و$ الضوضاء. يمكن كتابة الصيغ باستخدام معلمات نطاق الوقت أو التردد.
Artificial intelligence, jitter, Phase Noise, Organic chemistry, Jitter, Nanoelectronics and Transistors, Noise (video), Engineering, Statistical Timing Analysis, ring oscillator (ROSC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Image (mathematics), Oscillators, Electrical and Electronic Engineering, Topology (electrical circuits), reliability, Radio Frequency Integrated Circuit Design, Electronic engineering, Ring (chemistry), 1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">f</italic> noise, Low-Power VLSI Circuit Design and Optimization, Computer science, TK1-9971, Chemistry, Random telegraph noise (RTN), Combinatorics, logic gates, Physical Sciences, Electrical engineering. Electronics. Nuclear engineering, Mathematics
Artificial intelligence, jitter, Phase Noise, Organic chemistry, Jitter, Nanoelectronics and Transistors, Noise (video), Engineering, Statistical Timing Analysis, ring oscillator (ROSC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Image (mathematics), Oscillators, Electrical and Electronic Engineering, Topology (electrical circuits), reliability, Radio Frequency Integrated Circuit Design, Electronic engineering, Ring (chemistry), 1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">f</italic> noise, Low-Power VLSI Circuit Design and Optimization, Computer science, TK1-9971, Chemistry, Random telegraph noise (RTN), Combinatorics, logic gates, Physical Sciences, Electrical engineering. Electronics. Nuclear engineering, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
