
In recent years, there have been frequent incidents of financial fraud committed through various means. How to more efficiently identify financial fraud and maintain capital market order is a problem that scholars from all walks of life are discussing and urgently seeking to resolve. In this study, a financial fraud identification model is constructed based on the stacking ensemble learning algorithm, and the text of the management discussion and analysis (MD&A) chapter in annual reports is introduced based on financial and nonfinancial variables, using sentiment polarity, emotional tone, and text readability as text variables. The results show that when considering financial and nonfinancial variables and introducing text variables, the recognition effect of the stacking ensemble learning model constructed in this study is significantly better than the classification results of each single classifier model. In addition, the model recognition effect is better after adding text variables. Therefore, the model is expected to provide a new and more effective method of identifying financial fraud.
Machine Learning, Fraud, Algorithms, Research Article
Machine Learning, Fraud, Algorithms, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
