Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Web Information Systems
Article . 2021 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance evaluation of GPU- and cluster-computing for parallelization of compute-intensive tasks

Authors: Alexander Döschl; Max-Emanuel Keller; Peter Mandl;

Performance evaluation of GPU- and cluster-computing for parallelization of compute-intensive tasks

Abstract

PurposeThis paper aims to evaluate different approaches for the parallelization of compute-intensive tasks. The study compares a Java multi-threaded algorithm, distributed computing solutions with MapReduce (Apache Hadoop) and resilient distributed data set (RDD) (Apache Spark) paradigms and a graphics processing unit (GPU) approach with Numba for compute unified device architecture (CUDA).Design/methodology/approachThe paper uses a simple but computationally intensive puzzle as a case study for experiments. To find all solutions using brute force search, 15! permutations had to be computed and tested against the solution rules. The experimental application comprises a Java multi-threaded algorithm, distributed computing solutions with MapReduce (Apache Hadoop) and RDD (Apache Spark) paradigms and a GPU approach with Numba for CUDA. The implementations were benchmarked on Amazon-EC2 instances for performance and scalability measurements.FindingsThe comparison of the solutions with Apache Hadoop and Apache Spark under Amazon EMR showed that the processing time measured in CPU minutes with Spark was up to 30% lower, while the performance of Spark especially benefits from an increasing number of tasks. With the CUDA implementation, more than 16 times faster execution is achievable for the same price compared to the Spark solution. Apart from the multi-threaded implementation, the processing times of all solutions scale approximately linearly. Finally, several application suggestions for the different parallelization approaches are derived from the insights of this study.Originality/valueThere are numerous studies that have examined the performance of parallelization approaches. Most of these studies deal with processing large amounts of data or mathematical problems. This work, in contrast, compares these technologies on their ability to implement computationally intensive distributed algorithms.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!