Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neural Networksarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neural Networks
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust noise-aware algorithm for randomized neural network and its convergence properties

Authors: Yuqi Xiao; Muideen Adegoke; Chi-Sing Leung; Kwok Wa Leung;

Robust noise-aware algorithm for randomized neural network and its convergence properties

Abstract

The concept of randomized neural networks (RNNs), such as the random vector functional link network (RVFL) and extreme learning machine (ELM), is a widely accepted and efficient network method for constructing single-hidden layer feedforward networks (SLFNs). Due to its exceptional approximation capabilities, RNN is being extensively used in various fields. While the RNN concept has shown great promise, its performance can be unpredictable in imperfect conditions, such as weight noises and outliers. Thus, there is a need to develop more reliable and robust RNN algorithms. To address this issue, this paper proposes a new objective function that addresses the combined effect of weight noise and training data outliers for RVFL networks. Based on the half-quadratic optimization method, we then propose a novel algorithm, named noise-aware RNN (NARNN), to optimize the proposed objective function. The convergence of the NARNN is also theoretically validated. We also discuss the way to use the NARNN for ensemble deep RVFL (edRVFL) networks. Finally, we present an extension of the NARNN to concurrently address weight noise, stuck-at-fault, and outliers. The experimental results demonstrate that the proposed algorithm outperforms a number of state-of-the-art robust RNN algorithms.

Related Organizations
Keywords

Learning, Neural Networks, Computer, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!