Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Classification of Short-Segment Pediatric Heart Sounds Based on a Transformer-Based Convolutional Neural Network

Authors: Md Hassanuzzaman; Samit Kumar Ghosh; Mohammad Nurul Akhtar Hasan; Mohammad Abdullah Al Mamun; Khawza I. Ahmed; Raqibul Mostafa; Ahsan H. Khandoker;

Classification of Short-Segment Pediatric Heart Sounds Based on a Transformer-Based Convolutional Neural Network

Abstract

Congenital heart diseases (CHDs), caused by structural abnormalities in the heart and blood vessels, pose a significant public health concern and contribute significantly to the socioeconomic burden, particularly in pediatric populations. Phonocardiograms (PCGs), as a non-invasive and cost-effective diagnostic modality, capture vital acoustic signals that reflect the mechanical activity of the heart and can reveal pathological patterns associated with various CHD types. This study investigates the minimum signal duration required for accurate automatic classification of heart sounds and evaluates signal quality using the root mean square of successive differences (RMSSD) and the zero-crossing rate (ZCR). Mel-frequency cepstral coefficients (MFCCs) are extracted as features and fed into a transformer-based residual one-dimensional convolutional neural network (1D-CNN) for classification. Experimental results show that a threshold of 0.4 for RMSSD and ZCR yields optimal classification performance, with a minimum signal length of 5 seconds required for reliable results. Shorter segments (3 seconds) lack sufficient diagnostic information, while longer segments (15 seconds) may introduce additional noise. The proposed model achieves a maximum classification accuracy of 93.69% with 5-second signals.

Keywords

Phonocardiogram, mel-frequency cepstral coefficients, signal duration, attention transformer, Electrical engineering. Electronics. Nuclear engineering, congenital heart disease, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold