Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Haptics
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neuromuscular Interfacing for Advancing Kinesthetic and Teleoperated Programming by Demonstration of Collaborative Robots

Authors: Roberto Meattini; Armando Amerì; Alessandra Bernardini; Javier Gonzalez-Huarte; Aitor Ibarguren; Claudio Melchiorri; Gianluca Palli;

Neuromuscular Interfacing for Advancing Kinesthetic and Teleoperated Programming by Demonstration of Collaborative Robots

Abstract

This study addresses the challenges of Programming by Demonstration (PbD) in the context of collaborative robots, focusing on the need to provide additional degrees of programming without hindering the user's ability to demonstrate trajectories. The study proposes the use of a wearable human-robot interface based on surface Electromyography (sEMG) to measure the forearm's muscle co-contraction level, enabling additional programming inputs through hand stiffening level modulations without interfering with voluntary movements. Vibrotactile feedback enhances the operator's understanding of the additional programming inputs during PbD tasks. The proposed approach is demonstrated through experiments involving a collaborative robot performing an industrial wiring task. The results showcase the effectiveness and intuitiveness of the interface, allowing simultaneous programming of robot compliance and gripper grasping. The framework, applicable to both teleoperation and kinesthetic teaching, demonstrated effectively in an industrial wiring task with a 100% success rate over the group of subjects. Furthermore, the presence of vibortactile feedback showed an average decrease of programming errors of 33%, and statistical analyses confirmed the subjects' ability to correctly modulate co-contraction levels. This innovative framework augments programming by demonstration by integrating neuromuscular interfacing and introducing structured programming logics, providing an intuitive human-robot interaction for programming both gripper and compliance in teleoperation and kinesthetic teaching.

Keywords

Male, Adult, Electromyography, Programming by demonstration, advanced human-robot interfaces; Programming by demonstration; robotic wiring, Robotics, Equipment Design, Computer Science Applications, Human-Computer Interaction, User-Computer Interface, Forearm, Young Adult, Touch Perception, Feedback, Sensory, robotic wiring, Humans, Female, SDG 9 - Industry, Innovation, and Infrastructure, Muscle, Skeletal, advanced human-robot interfaces, Kinesthesis, Man-Machine Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities